36 research outputs found

    Sensitivity improvement to active piezoresistive AFM probes using focused ion beam processing

    Get PDF
    This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations

    Engineering method for tailoring electrical characteristics in TiN/TiOx/HfOx/Au Bi-layer oxide memristive devices

    Get PDF
    Memristive devices have led to an increased interest in neuromorphic systems. However, different device requirements are needed for the multitude of computation schemes used there. While linear and time-independent conductance modulation is required for machine learning, non-linear and time-dependent properties are necessary for neurobiologically realistic learning schemes. In this context, an adaptation of the resistance switching characteristic is necessary with regard to the desired application. Recently, bi-layer oxide memristive systems have proven to be a suitable device structure for this purpose, as they combine the possibility of a tailored memristive characteristic with low power consumption and uniformity of the device performance. However, this requires technological solutions that allow for precise adjustment of layer thicknesses, defect densities in the oxide layers, and suitable area sizes of the active part of the devices. For this purpose, we have investigated the bi-layer oxide system TiN/TiOx/HfOx/Au with respect to tailored I-V non-linearity, the number of resistance states, electroforming, and operating voltages. Therefore, a 4-inch full device wafer process was used. This process allows a systematic investigation, i.e., the variation of physical device parameters across the wafer as well as a statistical evaluation of the electrical properties with regard to the variability from device to device and from cycle to cycle. For the investigation, the thickness of the HfOx layer was varied between 2 and 8 nm, and the size of the active area of devices was changed between 100 and 2,500 µm2. Furthermore, the influence of the HfOx deposition condition was investigated, which influences the conduction mechanisms from a volume-based, filamentary to an interface-based resistive switching mechanism. Our experimental results are supported by numerical simulations that show the contribution of the HfOx film in the bi-layer memristive system and guide the development of a targeting device

    Lights out! Nano-scale topography imaging of sample surface in opaque liquid environments with coated active cantilever probes

    Get PDF
    Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments

    Determination of the mixing ratio of a flowing gas mixture with self-actuated microcantilevers

    Get PDF
    Microcantilevers offer a wide range of applications in sensor and measurement technology. In this work cantilever sensors are used as flow sensors. Most conventional flow sensors are often only calibrated for one type of gas and allow an analysis of gas mixtures only with increased effort. The sensor used here is a cantilever positioned vertically in the flow channel. It is possible to operate the sensor in dynamic and static mode. In the dynamic mode the cantilever is oscillating. Resonance frequency, resonance amplitude and phase are measured. In static mode, the bending of the cantilever is registered. The combination of the modes enables the different measured variables to be determined simultaneously. A flow influences the movement behaviour of the sensor, which allows the flow velocity to be deduced. In addition to determining the flow velocity, it is also possible to detect different types of gas. Each medium has certain properties (density and viscosity) which have different effects on the bending of the sensor. As a result, it is possible to measure the mixing ratio of a known binary gas mixture and their flow velocity simultaneously with a single sensor. In this paper this is investigated using the example of the air–carbon-dioxide mixture

    Tularemia Outbreak, Bulgaria, 1997–2005

    Get PDF
    The 1997–2005 tularemia outbreak in Bulgaria affected 285 people. Ten strains were isolated from humans, a tick, a hare, and water. Amplified fragment length polymorphism typing of the present isolates and of the strain isolated in 1962 suggests that a new genetic variant caused the outbreak

    Radiation Tolerance and Charge Trapping Enhancement of ALD HfO2/Al2O3 Nanolaminated Dielectrics

    Get PDF
    High-k dielectric stacks are regarded as a promising information storage media in the Charge Trapping Non-Volatile Memories, which are the most viable alternative to the standard floating gate memory technology. The implementation of high-k materials in real devices requires (among the other investigations) estimation of their radiation hardness. Here we report the effect of gamma radiation (60Co source, doses of 10 and 10 kGy) on dielectric properties, memory windows, leakage currents and retention characteristics of nanolaminated HfO2/Al2O3 stacks obtained by atomic layer deposition and its relationship with post-deposition annealing in oxygen and nitrogen ambient. The results reveal that depending on the dose, either increase or reduction of all kinds of electrically active defects (i.e., initial oxide charge, fast and slow interface states) can be observed. Radiation generates oxide charges with a different sign in O2 and N2 annealed stacks. The results clearly demonstrate a substantial increase in memory windows of the as-grown and oxygen treated stacks resulting from enhancement of the electron trapping. The leakage currents and the retention times of O2 annealed stacks are not deteriorated by irradiation, hence these stacks have high radiation tolerance

    Review Article: Active scanning probes: a versatile toolkit for fast imaging and emerging nanofabrication

    Get PDF
    With the recent advances in the field of nanotechnology, measurement and manipulation requirements at the nanoscale have become more stringent than ever before. In atomic force microscopy, high-speed performance alone is not sufficient without considerations of other aspects of the measurement task, such as the feature aspect ratio, required range, or acceptable probe-sample interaction forces. In this paper, the authors discuss these requirements and the research directions that provide the highest potential in meeting them. The authors elaborate on the efforts toward the downsizing of self-sensed and self-actuated probes as well as on upscaling by active cantilever arrays. The authors present the fabrication process of active probes along with the tip customizations carried out targeting specific application fields. As promising application in scope of nanofabrication, field emission scanning probe lithography is introduced. The authors further discuss their control and design approach. Here, microactuators, e.g., multilayer microcantilevers, and macroactuators, e.g., flexure scanners, are combined in order to simultaneously meet both the range and speed requirements of a new generation of scanning probe microscopes

    A functional approach to system identification and model reduction

    No full text
    Ever since mathematical models have been used to describe dynamical systems, ideas related to approximation and estimation received a lot of attention. In engineering applications two fundamentally different paradigms emerged: system identification and model reduction. Both paradigms aim at providing their users with models which are as simple as possible, and yet preserve those features of the system, which are important for the application at hand. In this thesis we follow a functional approach and consider both system identification and model reduction in a common framework where linear algebra, differential geometry, probability, statistics, and functional analysis find their intersection. In the context of system identification, with main focus on transfer function estimation, we introduce the Crámer-Rao kernel function. The latter provides a lower bound on the variance of any unbiased transfer function estimator. In many cases the model structure forms a differentiable manifold which allows us to circumvent parametrizations, for direct coordinate-free results. We demonstrate how the Crámer-Rao kernel function can be used for optimal input design, which aims at performance specification for a given frequency range. Moreover, we establish necessary and sufficient conditions for the feasibility to estimate a reduced order model, given samples from an experiment, with a singular information matrix. In the context of model reduction, with main focus on balanced truncation and optimal Hankel norm approximation, we develop a novel state-realization where the state-transition is given by a truncated Toeplitz operator which acts on minimal norm past inputs. We show that every balanced matrix realization is a matrix representation of our coordinate-free realization, in the basis given by the scaled right singular vectors of the corresponding Hankel operator. We show that this Hankel operator can be replaced by a unitary equivalent Toeplitz operator. This replacement allows us to develop new algorithms for balancing and Hankel norm approximation which are more efficient than the classical ones.(FSA 3) -- UCL, 201
    corecore